Model-Checking Markov Chains in the Presence of Uncertainties
نویسندگان
چکیده
We investigate the problem of model checking Interval-valued Discrete-time Markov Chains (IDTMC). IDTMCs are discrete-time finite Markov Chains for which the exact transition probabilities are not known. Instead in IDTMCs, each transition is associated with an interval in which the actual transition probability must lie. We consider two semantic interpretations for the uncertainty in the transition probabilities of an IDTMC. In the first interpretation, we think of an IDTMC as representing a (possibly uncountable) family of (classical) discrete-time Markov Chains, where each member of the family is a Markov Chain whose transition probabilities lie within the interval range given in the IDTMC. This semantic interpretation we call Uncertain Markov Chains (UMC). In the second semantics for an IDTMC, which we call Interval Markov Decision Process (IMDP), we view the uncertainty as being resolved through non-determinism. In other words, each time a state is visited, we adversarially pick a transition distribution that respects the interval constraints, and take a probabilistic step according to the chosen distribution. We show that the PCTL model checking problem for both Uncertain Markov Chain semantics and Interval Markov Decision Process semantics is decidable in PSPACE. We also prove lower bounds for these model checking problems.
منابع مشابه
A Robust Reliable Forward-reverse Supply Chain Network Design Model under Parameter and Disruption Uncertainties
Social responsibility is a key factor that could result in success and achieving great benefits for supply chains. Responsiveness and reliability are important social responsibility measures for consumers and all stakeholders that strategists and company managers should be concerned about them in long-term planning horizon. Although, presence of uncertainties as an intrinsic part of supply chai...
متن کاملEvaluation of First and Second Markov Chains Sensitivity and Specificity as Statistical Approach for Prediction of Sequences of Genes in Virus Double Strand DNA Genomes
Growing amount of information on biological sequences has made application of statistical approaches necessary for modeling and estimation of their functions. In this paper, sensitivity and specificity of the first and second Markov chains for prediction of genes was evaluated using the complete double stranded DNA virus. There were two approaches for prediction of each Markov Model parameter,...
متن کاملReliability Assessment of Power Generation Systems in Presence of Wind Farms Using Fuzzy Logic Method
A wind farm is a collection of wind turbines built in an area to provide electricity. Wind power is a renewable energy resource and an alternative to non-renewable fossil fuels. In this paper impact of wind farms in power system reliability is investigate and a new procedure for reliability assessment of wind farms in HL1 level is proposed. In proposed procedure, application of Fuzzy – Markov f...
متن کاملFinancial Risk Modeling with Markova Chain
Investors use different approaches to select optimal portfolio. so, Optimal investment choices according to return can be interpreted in different models. The traditional approach to allocate portfolio selection called a mean - variance explains. Another approach is Markov chain. Markov chain is a random process without memory. This means that the conditional probability distribution of the nex...
متن کاملEmpirical Bayes Estimation in Nonstationary Markov chains
Estimation procedures for nonstationary Markov chains appear to be relatively sparse. This work introduces empirical Bayes estimators for the transition probability matrix of a finite nonstationary Markov chain. The data are assumed to be of a panel study type in which each data set consists of a sequence of observations on N>=2 independent and identically dis...
متن کامل